
Gridology

Fedor V. Fomin

Department of Informatics, University of Bergen, Norway

AGAPE 2009

Example: The city of Bergen

How to place k fire stations such that every building is

within r city blocks from the nearest fire station?

How to place k fire stations?

I Some simplifications: Bergen is a planar graph and r = 1.

I There is a linear kernel O(k) for dominating set on planar

graph, so 2O(k)nO(1) algorithm is possible

I We show how to get subexponential 2
√
knO(1) algorithms.

I The idea works even when Bergen has more complicated

structure, like embedded on a surface of bounded genus, or

excluding some fixed graph as a minor; it works for every fixed

r ≥ 1, and for many other problems

How to place k fire stations?

I Some simplifications: Bergen is a planar graph and r = 1.

I There is a linear kernel O(k) for dominating set on planar

graph, so 2O(k)nO(1) algorithm is possible

I We show how to get subexponential 2
√
knO(1) algorithms.

I The idea works even when Bergen has more complicated

structure, like embedded on a surface of bounded genus, or

excluding some fixed graph as a minor; it works for every fixed

r ≥ 1, and for many other problems

How to place k fire stations?

I Some simplifications: Bergen is a planar graph and r = 1.

I There is a linear kernel O(k) for dominating set on planar

graph, so 2O(k)nO(1) algorithm is possible

I We show how to get subexponential 2
√
knO(1) algorithms.

I The idea works even when Bergen has more complicated

structure, like embedded on a surface of bounded genus, or

excluding some fixed graph as a minor; it works for every fixed

r ≥ 1, and for many other problems

How to place k fire stations?

I Some simplifications: Bergen is a planar graph and r = 1.

I There is a linear kernel O(k) for dominating set on planar

graph, so 2O(k)nO(1) algorithm is possible

I We show how to get subexponential 2
√
knO(1) algorithms.

I The idea works even when Bergen has more complicated

structure, like embedded on a surface of bounded genus, or

excluding some fixed graph as a minor; it works for every fixed

r ≥ 1, and for many other problems

Outline of the tutorial

I Framework for parameterized algorithms: combinatorial

bounds + dynamic programming

I Combinatorial bounds via Graph Minor theorems

I Bidimensionality

I Dynamic programming which uses graph structure

I Catalan structures

Graph Minors

The framework exploits the structure of graph classes that exclude

some graph as a minor

Minors and contractions

H is a contraction of G (H ≤c G) if H occurs from G after

applying a series of edge contractions.

H is a minor of G (H ≤m G) if H is the contraction of some

subgraph of G.

Notice: ≤m and ≤c are partial relations on graphs

Minors and contractions

G3 � G2 � G1, G2 �c G1 but also G3 6�c G2 and G3 6�c G1

Minors and contractions

A graph class G is minor (contraction) closed if any minor

(contraction) of a graph in G is again in G.

A graph G is H-minor-free when it does not contain H as a minor.

A graph class G is H-minor-free (or, excludes H as a minor) when

all its members are H-minor-free.

Examples of H-minor-free classes

I Forests: K3

I Outerplanar Graphs: K2,3, K4

I Planar Graphs: K3,3, K5

I Link-free Graphs: 7 graphs (X-Y transformations of K6)

I Graphs of the projective plane: 103 graphs

Graph Minor theorem

Robertson & Seymour (1986–2004):

Theorem (Graphs Minor Theorem)

Graphs are well-quasi-ordered by the minor relation ≤m.

I Consequence: every minor closed graph class G has a finite set

of minimal excluded minors.

Graph Minor theorem

Graphs Minor Theorem is not used in our tutorial. However,we

need tools created by Roberston-Seymour in order to prof this

theorem.

Main tool: Branch Decompositions

Definition

A branch decomposition of a graph G = (V,E) is a tuple (T, µ)

where

I T is a tree with degree 3 for all internal nodes.

I µ is a bijection between the leaves of T and E(G).

Example of Branch Decomposition

8

4 6

1 3a b

f g

c d m

h i j k

l

j

l

b m

k

g

c

a d

f
h

i

c
5

7

2

Edge e ∈ T partitions the edge set of G in Ae and Be

8

4 6

1 3a b

f g

c d m

h i j k

l

j

l

b m

k

g

c

a d

f
h

i

c
5

7

2

Edge e ∈ T partitions the edge set of G in Ae and Be

8

4 6

1 3a b

f g

c d m

h i j k

l

j

l

b m

k

g

c

a d

f
h

i
e

c
5

7

2

Middle set mid(e) = V (Ae) ∩V (Be)

8

4 6

1 3a b

f g

c d m

h i j k

l

j

l

b m

k

g
{2, 5, 7}

c

a d

f
h

i
e

c
5

7

2

Branchwidth

I The width of a branch decomposition is maxe∈T |mid(e)|.

I The branchwidth of a graph G is the minimum width over all

branch decompositions of G.

Exercises

I What is the branchwidth of a tree?

I Complete graph on n vertices?

I (`× `)-grid?

Vertex Cover

A vertex cover C of a graph G, vc(G), is a set of vertices

such that every edge of G has at least one endpoint in C.

Dynamic programming: Vertex Cover

Dynamic programming: Vertex Cover

Main idea—dynamic programming.

I Start from leaves, compute all possible vertex covers of each

edge

I We have two branches Left and Right, and middle set M of

vertices separating Left and Right. For every possible

assignment A of VC for vertices M , compute

V ALUE(Left, A) + V ALUE(Right, A)− V ALUE(A)

Dynamic programming: Vertex Cover

Dynamic programming: Vertex Cover

Dynamic programming: Vertex Cover

Dynamic programming: Vertex Cover

Dynamic programming: Vertex Cover

Dynamic programming: Vertex Cover

Dynamic programming: Vertex Cover

Let ` = bw(G) and m = |E(G)|.

I Running time: size of every table for middle set is O(2`).

I To compute a new table: O(22`)

I Number of steps O(m)

I Total running time: O(22`m).

Dynamic programming: Vertex Cover

Exercise

Try to improve the running time, say to O(21.5`m).

Grid Theorem

Theorem (Robertson, Seymour & Thomas, 1994)

Let ` ≥ 1 be an integer. Every planar graph of branchwidth ≥ 4`

contains ` as a minor.

Grid Theorem: Sketch of the proof

The proof is based on Menger’s Theorem

Theorem (Menger 1927)

Let G be a finite undirected graph and x and y two nonadjacent

vertices. The size of the minimum vertex cut for x and y (the

minimum number of vertices whose removal disconnects x and y)

is equal to the maximum number of pairwise vertex-disjoint paths

from x to y.

Grid Theorem: Sketch of the proof

Let G be a plane graph that has no (`× `)-grid as a minor.

WEST

NORTH

SOUTH

EAST

Grid Theorem: Sketch of the proof

Either East can be separated from West, or South from North by

removing at most ` vertices

WEST

NORTH

SOUTH

EAST

Grid Theorem: Sketch of the proof

Otherwise by making use of Menger we can construct `× ` grid as

a minor

WEST

NORTH

SOUTH

EAST

Grid Theorem: Sketch of the proof

Partition the edges. Every time the middle set contains only

vertices of East, West, South, and North, at most 4` in total.

WEST

NORTH

SOUTH

EAST

How to compute branchwidth

I NP-hard in general (Seymour-Thomas, Combinatorica 1994)

I On planar graphs can be computed in time O(n3)

(Seymour-Thomas, Combinatorica 1994 and Gu-Tamaki,

ICALP 2005)

I RST grid theorem provides 4-approximation.

We know enough to solve Vertex Cover!

vc(Hr,r) ≥ r2

2

We know enough to solve Vertex Cover!

Let G be a planar graph of

branchwidth ≥ `

=⇒
G contains an (`/4× `/4)-grid

H as a minor

The size of any vertex cover of H is at least `2/32. Since H is a

minor of G, the size of any vertex cover of G is at least `2/32.

WIN/WIN

If k < `2/32, we say “NO”

If k ≥ `2/32, then we do DP in time

O(22`m) = O(2O(
√
k)m).

We know enough to solve Vertex Cover!

Let G be a planar graph of

branchwidth ≥ ` =⇒
G contains an (`/4× `/4)-grid

H as a minor

The size of any vertex cover of H is at least `2/32. Since H is a

minor of G, the size of any vertex cover of G is at least `2/32.

WIN/WIN

If k < `2/32, we say “NO”

If k ≥ `2/32, then we do DP in time

O(22`m) = O(2O(
√
k)m).

We know enough to solve Vertex Cover!

Let G be a planar graph of

branchwidth ≥ ` =⇒
G contains an (`/4× `/4)-grid

H as a minor

The size of any vertex cover of H is at least `2/32. Since H is a

minor of G, the size of any vertex cover of G is at least `2/32.

WIN/WIN

If k < `2/32, we say “NO”

If k ≥ `2/32, then we do DP in time

O(22`m) = O(2O(
√
k)m).

We know enough to solve Vertex Cover!

Let G be a planar graph of

branchwidth ≥ ` =⇒
G contains an (`/4× `/4)-grid

H as a minor

The size of any vertex cover of H is at least `2/32. Since H is a

minor of G, the size of any vertex cover of G is at least `2/32.

WIN/WIN

If k < `2/32, we say “NO”

If k ≥ `2/32, then we do DP in time

O(22`m) = O(2O(
√
k)m).

Challenges to discuss

I How to generalize the idea to work for other parameters?

I Does not work for Dominating Set. Why?

I Is planarity essential?

I Dynamic programming. Does MSOL helps here?

Parameters

A parameter P is any function mapping graphs to nonnegative

integers. The parameterized problem associated with P asks, for

some fixed k, whether for a given graph G, P (G) ≤ k (for

minimization) and P (G) ≥ k (for maximization problem). We say

that a parameter P is closed under taking of minors/contractions

(or, briefly, minor/contraction closed) if for every graph H, H � G

/ H �c G implies that P (H) ≤ P (G).

Examples of parameters: k-Vertex Cover

A vertex cover C of a graph G, vc(G), is a set of vertices

such that every edge of G has at least one endpoint in

C. The k-Vertex Cover problem is to decide, given a

graph G and a positive integer k, whether G has a vertex

cover of size k.

k-Vertex Cover

k-Vertex Cover is closed under taking minors.

Examples of parameters: k-Dominating set

A dominating set D of a graph G is a set of vertices such

that every vertex outside D is adjacent to a vertex of D.

The k-Dominating Set problem is to decide, given a

graph G and a positive integer k, whether G has a

dominating set of size k.

k-Dominating set

k-Dominating set is not closed under taking minors. However,

it is closed under contraction of edges.

(Not exactly related to this tutorial but worth to be

mentioned)

By Robertson-Seymour theory, every minor closed parameter

problem is FPT.

Subexponential algorithms on planar graphs: What is the

main idea?

Dynamic programming and
Grid Theorem

Meta conditions

(A) For every graph G ∈ G, bw(G) ≤ α ·
√
P (G) +O(1)

(B) For every graph G ∈ G and given a branch decomposition

(T, µ) of G, the value of P (G) can be computed in

f(bw(T, µ)) · nO(1) steps.

Algorithm

(A) For every graph G ∈ G, bw(G) ≤ α ·
√
P (G) +O(1)

(B) For every graph G ∈ G and given a branch decomposition

(T, µ) of G, the value of P (G) can be computed in

f(bw(T, µ)) · nO(1) steps.

If bw(T, µ) > α ·
√
k, then by (A) the answer is clear

Else, by (B), P (G) can be computed in f(α ·
√
k) · nO(1) steps.

When f(k) = 2O(k), the running time is 2O(
√
k) · nO(1)

This tutorial:

(A) For every graph G ∈ G, bw(G) ≤ α ·
√
P (G) +O(1)

(B) For every graph G ∈ G and given a branch decomposition

(T, µ) of G, the value of P (G) can be computed in

f(bw(T, µ)) · nO(1) steps

I How to prove (A)

I How to do (B)

Combinatorial bounds:
Bidimensionality and excluding a grid
as a minor

Reminder

Theorem (Robertson, Seymour & Thomas, 1994)

Let ` ≥ 1 be an integer. Every planar graph of branchwidth ≥ `

contains an (`/4× `/4)-grid as a minor.

Planar k-Vertex Cover

Hr,r for r = 10

Planar k-Vertex Cover

vc(Hr,r) ≥ r2

2

Planar k-Vertex Cover

Let G be a planar graph of

branchwidth ≥ `

=⇒
G contains an (`/4× `/4)-grid

H as a minor

The size of any vertex cover of H is at least `2/32. Since H is a

minor of G, the size of any vertex cover of G is at least `2/32.

Conclusion: Property (A) holds for α = 4
√

2, i.e.

bw(G) ≤ 4
√

2
√

vc(G).

Planar k-Vertex Cover

Let G be a planar graph of

branchwidth ≥ ` =⇒
G contains an (`/4× `/4)-grid

H as a minor

The size of any vertex cover of H is at least `2/32. Since H is a

minor of G, the size of any vertex cover of G is at least `2/32.

Conclusion: Property (A) holds for α = 4
√

2, i.e.

bw(G) ≤ 4
√

2
√

vc(G).

Planar k-Vertex Cover

Let G be a planar graph of

branchwidth ≥ ` =⇒
G contains an (`/4× `/4)-grid

H as a minor

The size of any vertex cover of H is at least `2/32. Since H is a

minor of G, the size of any vertex cover of G is at least `2/32.

Conclusion: Property (A) holds for α = 4
√

2, i.e.

bw(G) ≤ 4
√

2
√

vc(G).

Planar k-Vertex Cover

Let G be a planar graph of

branchwidth ≥ ` =⇒
G contains an (`/4× `/4)-grid

H as a minor

The size of any vertex cover of H is at least `2/32. Since H is a

minor of G, the size of any vertex cover of G is at least `2/32.

Conclusion: Property (A) holds for α = 4
√

2, i.e.

bw(G) ≤ 4
√

2
√

vc(G).

Planar k-Vertex Cover

Dorn, 2006: given a branch decomposition of G of width `, the

minimum vertex cover of G can be computed in time

f(`)n = 2
ω
2
`n, where ω is the fast matrix multiplication constant.

Planar k-Vertex Cover: Putting things together

I Use Seymour-Thomas algorithm to compute a branchwidth of

a planar graph G in time O(n3)

I If bw(G) ≥ 4
√
k√
2

, then G has no vertex cover of size k

I Otherwise, compute vertex cover in time

O(2
2ω
√

k√
2 n) = O(23.56

√
kn)

I Total running time O(n3 + 23.56
√
kn)

Planar k-Vertex Cover: Kernelization never hurts

I Find a kernel of size O(k) in time n3/2 (use Fellows et al.

crown decomposition method)

I Use Seymour-Thomas algorithm to compute a branchwidth of

the reduced planar graph G in time O(k3)

I If bw(G) ≥ 4
√
k√
2

, then G has no vertex cover of size k

I Otherwise, compute vertex cover in time

O(2
2ω
√

k√
2 k) = O(23.56

√
kk)

I Total running time O(n3/2 + 23.56
√
kk)

k-Feedback Vertex Set

k-Feedback Vertex Set

fvc(Hr,r) ≥ r2

4

k-Feedback Vertex Set

I If bw(G) ≥ r, then G ≥m H r
4
, r
4

I fvs is minor-closed, therefore fvs(G) ≥ fvs(H r
4
, r
4
) ≥ r2

64

we have that bw(G) ≤ 8 ·
√

fvs(G)

therefore, for p-Vertex Feedback Set, f(k) = O(
√
k)

Conclusion:

p-Vertex Feedback Set has a 2O(log k·
√
k) ·O(n) step

algorithm.

k-Feedback Vertex Set

I If bw(G) ≥ r, then G ≥m H r
4
, r
4

I fvs is minor-closed, therefore fvs(G) ≥ fvs(H r
4
, r
4
) ≥ r2

64

we have that bw(G) ≤ 8 ·
√

fvs(G)

therefore, for p-Vertex Feedback Set, f(k) = O(
√
k)

Conclusion:

p-Vertex Feedback Set has a 2O(log k·
√
k) ·O(n) step

algorithm.

k-Feedback Vertex Set

I If bw(G) ≥ r, then G ≥m H r
4
, r
4

I fvs is minor-closed, therefore fvs(G) ≥ fvs(H r
4
, r
4
) ≥ r2

64

we have that bw(G) ≤ 8 ·
√

fvs(G)

therefore, for p-Vertex Feedback Set, f(k) = O(
√
k)

Conclusion:

p-Vertex Feedback Set has a 2O(log k·
√
k) ·O(n) step

algorithm.

Planar k-Dominating Set

Can we proceed by the same arguments with Planar

k-Dominating Set?

Oops! Here is a problem! Dominating set is not minor closed!

However, dominating set is closed under contraction

Planar k-Dominating Set

Can we proceed by the same arguments with Planar

k-Dominating Set?

Oops! Here is a problem! Dominating set is not minor closed!

However, dominating set is closed under contraction

Planar k-Dominating Set

Can we proceed by the same arguments with Planar

k-Dominating Set?

Oops! Here is a problem! Dominating set is not minor closed!

However, dominating set is closed under contraction

Planar k-Dominating Set

Hr,r for r = 10

Planar k-Dominating Set

a partial triangulation of

H10,10

Planar k-Dominating Set

Every inner vertex of p.t.

grid H̃r,r dominates at most 9 vertices. Thus ds(H̃r,r) ≥ (r−2)2

9 .

Planar k-Dominating Set

I By RST-Theorem, a planar graph G of branchwidth ≥ ` can

be contracted to a partially triangulated (`/4× `/4)-grid

I Since dominating set is closed under contraction, we can

make the following

Conclusion: Property (A) holds for α = 12, i.e.

bw(G) ≤ 12
√

ds(G).

Planar k-Dominating Set

I By RST-Theorem, a planar graph G of branchwidth ≥ ` can

be contracted to a partially triangulated (`/4× `/4)-grid

I Since dominating set is closed under contraction, we conclude

that Planar k-Dominating Set also satisfies property (A)

with α = 12.

I Dorn, 2006, show that for k-Dominating Set in (B), one

can choose f(`) = 3
ω
2
`, where ω is the fast matrix

multiplication constant.

I Conclusion: Planar k-Dominating Set can be solved in

time O(n3 + 222.6
√
kn)

Planar k-Dominating Set

I By RST-Theorem, a planar graph G of branchwidth ≥ ` can

be contracted to a partially triangulated (`/4× `/4)-grid

I Since dominating set is closed under contraction, we conclude

that Planar k-Dominating Set also satisfies property (A)

with α = 12.

I Dorn, 2006, show that for k-Dominating Set in (B), one

can choose f(`) = 3
ω
2
`, where ω is the fast matrix

multiplication constant.

I Conclusion: Planar k-Dominating Set can be solved in

time O(n3 + 222.6
√
kn)

Bidimensionality: The main idea

If the graph parameter is closed under taking minors or

contractions, the only thing needed for the proof

branchwidth/parameter bound is to understand how this parameter

behaves on a (partially triangulated) grid.

Bidimensionality: Demaine, FF, Hajiaghayi, Thilikos, 2005

Definition

A parameter P is minor bidimensional with density δ if

1. P is closed under taking of minors, and

2. for the (r × r)-grid R, P (R) = (δr)2 + o((δr)2).

Bidimensionality: Demaine, FF, Hajiaghayi, Thilikos, 2005

Definition

A parameter P is called contraction bidimensional with density δ if

1. P is closed under contractions,

2. for any partially triangulated (r × r)-grid R,

P (R) = (δRr)2 + o((δRr)2), and

3. δ is the smallest δR among all paritally triangulated

(r × r)-grids.

Bidimensionality

Lemma

If P is a bidimensional parameter with density δ then P satisfies

property (A) for α = 4/δ, on planar graphs.

Proof.

Let R be an (r × r)-grid.

P (R) ≥ (δRr)2.

If G contains R as a minor, then bw(G) ≤ 4r ≤ 4/δ
√
P (G).

Examples of bidimensional problems

Vertex cover

Dominating Set

Independent Set

(k, r)-center

Feedback Vertex Set

Minimum Maximal Matching

Planar Graph TSP

Longest Path ...

How to extend bidimensionality to more general graph

classes?

I We need excluding grid theorems (sufficient for minor closed

parameters)

I For contraction closed parameters we have to be more careful

Bounded genus graphs: Demaine, FF, Hajiaghayi, Thilikos,

2005

Theorem

If G is a graph of genus at most γ with branchwidth more than r,

then G contains a (r/4(γ + 1)× r/4(γ + 1))-grid as a minor.

Can we go further?

What about more general graph classes?

I How to define bidimensionality for non-planar graphs?

The grid-minor-excluding theorem gives linear bounds for H-minor

free graphs:

Theorem (Demaine & Hajiaghayi, 2008)

There is a function φ : N→ N such that for every graph G

excluding a fixed h-vertex graph H as a minor the following holds:

I if bw(G) ≥ φ(h) · k then k ≤m G.

For every minor-closed graph class a minor-closed parameter p is

bidimensional if

p(k) = Ω(k2)

What about contraction-closed parameters?

We define the following two pattern graphs Γk and Πk:

Bidimensionality for minors and contractions The irrelevant vertex technique

Limits of bidimensionality

What about contraction-closed parameters?

We define the following two pattern graphs Γk and Πk:

Πk =Γk =

vnew

Πk = Γk+ a new vertex vnew, connected to all the vertices in V (Γk).

Dimitrios M. Thilikos ΕΚΠΑ-NKUA

Algorithmic Graph Minor Theory Part 2 77

Πk = Γk+ a new vertex vnew, connected to all the vertices in

V (Γk).

The grid-minor-excluding theorem gives linear bounds for H-minor

free graphs:

Theorem (Fomin, Golovach, & Thilikos, 2009)

There is a function φ : N→ N such that for every graph G

excluding a fixed h-vertex graph H as contraction the following

holds:

I if bw(G) ≥ φ(h) · k then either Γk ≤c G, or Πk ≤c G.

For contraction-closed graph class a contraction-closed parameter

p is bidimensional if

p(Γk) = Ω(k2) and p(Πk) = Ω(k2).

Limits of the bounded branchwidth WIN/WIN technique

As for each contraction-closed parameter p that we know, it holds

that p(Πk) = O(1) for all k,

Bidimensionality can be defined for apex-minor free graphs

(apex graphs are exactly the minors of Πk)

H∗ is an apex graph if

∃v ∈ V (H∗): H∗ − v is planar

Therefore for every apex-minor free graph class

a contraction-closed parameter p is bidimensional if

Bidimensionality for minors and contractions The irrelevant vertex technique

Limits of bidimensionality

Therefore for every apex-minor free graph class

a contraction-closed parameter p is bidimensional if

p(
k
) = Ω(k2)

Dimitrios M. Thilikos ΕΚΠΑ-NKUA

Algorithmic Graph Minor Theory Part 2 80

Conclusion

Minor bidimensional: minor- closed and p(k) = Ω(k2)

Contraction-bidimensional: contraction-closed and

Bidimensionality for minors and contractions The irrelevant vertex technique

Limits of bidimensionality

Therefore for every apex-minor free graph class

a contraction-closed parameter p is bidimensional if

p(
k
) = Ω(k2)

Dimitrios M. Thilikos ΕΚΠΑ-NKUA

Algorithmic Graph Minor Theory Part 2 80

Theorem (Bidimensionality meta-algorithm)

Let p be a minor (resp. contraction)-bidimensional parameter that

is computable in time 2O(bw(G)) · nO(1).

Then, deciding p(G) ≤ k for general (resp. apex) minor-free

graphs can be done (optimally) in time 2O(
√
k) · nO(1).

Limits of the bidimensionality

Remark

Bidimensionality cannot be used to obtain subexponential algorithms for

contraction closed parameterized problems on H-minor free graphs.

For some problems, like k-Dominating Set, it is still possible to design

subexponential algorithms on H-minor free graphs.

The main idea here is to use decomposition theorem of Robertson-Seymour about

decomposing an H-minor free graph into pieces of apex-minor-free graphs, apply

bidimensionality for each piece, and do dynamic programming over the whole

decomposition.

More grids

Grids for other problems

EXAMPLE I: t-spanners (ICALP 2008, Dragan, FF, Golovach)

t-spanners

Definition (t-spanner)

Let t be a positive integer. A subgraph S of G, such that

V (S) = V (G), is called a t-spanner, if distS(u, v) ≤ t · distG(u, v)

for every pair of vertices u and v. The parameter t is called the

stretch factor of S.

Examples of spanners

3 and 2-spanners

Examples of spanners

3 and 2-spanners

Examples of spanners

3 and 2-spanners

Spanners of bounded branchwidth

Problem (k-Branchwidth t-spanner)

Instance: A connected graph G and positive integers k and t.

Question: Is there a t-spanner of G of branchwidth at most k?

Planar graphs

Theorem (Bounds for planar graphs)

Let G be a planar graph of branchwidth k and let S be a t-spanner

of G. Then the branchwidth of S is Ω(k/t).

Sketch of the proof

Walls and grids

Sketch of the proof

Walls and grids

t

t

Sketch of the proof

Walls and grids

t

t

Sketch of the proof

Walls and grids

t

t

Sketch of the proof

Walls and grids

Sketch of the proof

Walls and grids

Sketch of the proof

Walls and grids

Sketch of the proof

Walls and grids

Algorithmic consequences

Theorem (Dragan, FF, Golovach, 2008)

Deciding if a planar graph G has a t-spanner of treewidth at most

k is solvable in time O(f(k, t) · n).

Theorem (Dragan, FF, Golovach, 2008)

Let H be a fixed apex graph. For every fixed k and t, the existence

of a t-spanner of treewidth at most k in an H-minor-free graph G

can be decided in linear time.

Another example

Induced cycle spanning a specified set of vertices

(SODA 2009, KOBAYASHI and KAWARABAYASHI)

Induced cycle

Problem (Induced Cycle Problem)

Instance: Planar graph G and and a subset S ⊆ V (G) of

terminal vertices of size k.

Question: Is there an induced cycle in G containing all terminal

vertices S?

Parameter k.

Algorithm sketch

I If there is a vertex which is far from each of the

terminals—just remove it, it does not change the solution.

(Far here means that there are 22k + 2 nested disjoint cycles

around v.)

I If every vertex is “close” to each of the terminals, then the

branchwidth of the graph O(k3/2). To prove this, one has to

look at the grid!

Bidimensional theory: Conclusion

If P is a parameter that

(A) is minor (contraction) bidimensional

(B) can be computed in f(bw(G)) · nO(1) steps.

then there is a f(O(
√
k)) · nO(1) step algorithm for checking

whether P(G) ≤ k for H (apex) -minor free graphs.

We now fix our attention to property (B) and function f .

Dynamic programming and Catalan
structures

Dynamic programming for branch decompositions

I We root the tree T of the branch decomposition (T, τ),

I We define a partial solution for each cut-set of an edge e of T

I We compute all partial solutions bottom-up (using the partial

solutions corresponding to the children edges).

This can be done in O(f(`) · n) if we have a branch decomposition

of width at most `.

f(`) depends on the number of partial solutions we have to

compute for each edge of T .

I To find a good bound for f(`) is important!

Dynamic programming for branch decompositions

I We root the tree T of the branch decomposition (T, τ),

I We define a partial solution for each cut-set of an edge e of T

I We compute all partial solutions bottom-up (using the partial

solutions corresponding to the children edges).

This can be done in O(f(`) · n) if we have a branch decomposition

of width at most `.

f(`) depends on the number of partial solutions we have to

compute for each edge of T .

I To find a good bound for f(`) is important!

For many problems, 2O(bw(G)) · nO(1) step algorithms exist.

Dynamic programming on graphs with small branchwidth gives

such algorithms for problems like

Vertex Cover,

Dominating Set, or

Edge Dominating Set, (and others...)

However: There are (many) problems where no general

2O(bw(G)) · nO(1) step algorithm is known.

Such problems are

Longest Path, Longest Cycle, Connected Dominating

Set, Feedback Vertex Set, Hamiltonian Cycle, Max

Leaf Tree and Graph Metric TSP

For the natural parameterizations of these problems, no 2O(
√

k) · nO(1)

step FPT-algorithm follows by just using bidimensionality theory and

dynamic programming.

However: There are (many) problems where no general

2O(bw(G)) · nO(1) step algorithm is known.

Such problems are

Longest Path, Longest Cycle, Connected Dominating

Set, Feedback Vertex Set, Hamiltonian Cycle, Max

Leaf Tree and Graph Metric TSP

For the natural parameterizations of these problems, no 2O(
√

k) · nO(1)

step FPT-algorithm follows by just using bidimensionality theory and

dynamic programming.

However: There are (many) problems where no general

2O(bw(G)) · nO(1) step algorithm is known.

Such problems are

Longest Path, Longest Cycle, Connected Dominating

Set, Feedback Vertex Set, Hamiltonian Cycle, Max

Leaf Tree and Graph Metric TSP

For the natural parameterizations of these problems, no 2O(
√

k) · nO(1)

step FPT-algorithm follows by just using bidimensionality theory and

dynamic programming.

Example: k-Longest Path

The k-Longest Path problem is to decide, given a

graph G and a positive integer k, whether G contains a

path of length k.

This problem is closed under the operation of taking minor.

Example: k-Longest Path

k-Longest Path has a

2O(
√
k·log k) · nO(1) step algorithm.

Because

(A) The parameter is minor bidimensional

(B) to find a longest path in a graph G takes

2O(bw(G)·log bw(G)) · n steps

Example: k-Longest Path

k-Longest Path has a

2O(
√
k·log k) · nO(1) step algorithm.

Because

(A) The parameter is minor bidimensional

(B) to find a longest path in a graph G takes

2O(bw(G)·log bw(G)) · n steps

Example: k-Longest Path

k-Longest Path has a

2O(
√
k·log k) · nO(1) step algorithm.

Because

(A) The parameter is minor bidimensional

(B) to find a longest path in a graph G takes

2O(bw(G)·log bw(G)) · n steps

Why log bw(G)?

Let P be a path in G. An edge e of a branch

decomposition T splits G into Ge and G\Ge.

I The restriction of a P to Ge is a collection P of internally disjoint

paths in Ge with ends in mid(e).

I Each P corresponds to some pairing (a disjoint set of paths in the

clique formed from mid(e))

I For a set S, let pairs(S) be the set of all pairings of S

Why log bw(G)?

Let P be a path in G. An edge e of a branch

decomposition T splits G into Ge and G\Ge.

I The restriction of a P to Ge is a collection P of internally disjoint

paths in Ge with ends in mid(e).

I Each P corresponds to some pairing (a disjoint set of paths in the

clique formed from mid(e))

I For a set S, let pairs(S) be the set of all pairings of S

Therefore, the complexity of dynamic programming depends on

|pairs(mid(e))|, which is Ω(bw!).

This obstacle does not allow to break 2O(bw(G)·log bw(G)) · n

barrier.

I Problem: The local info in dynamic programming is too big!

I Issue: The same problem appears in many dynamic

programming algorithms!

I Idea: as long as we care about sparse graph classes, we can take

their structure into consideration!

Therefore, the complexity of dynamic programming depends on

|pairs(mid(e))|, which is Ω(bw!).

This obstacle does not allow to break 2O(bw(G)·log bw(G)) · n

barrier.

I Problem: The local info in dynamic programming is too big!

I Issue: The same problem appears in many dynamic

programming algorithms!

I Idea: as long as we care about sparse graph classes, we can take

their structure into consideration!

Therefore, the complexity of dynamic programming depends on

|pairs(mid(e))|, which is Ω(bw!).

This obstacle does not allow to break 2O(bw(G)·log bw(G)) · n

barrier.

I Problem: The local info in dynamic programming is too big!

I Issue: The same problem appears in many dynamic

programming algorithms!

I Idea: as long as we care about sparse graph classes, we can take

their structure into consideration!

Therefore, the complexity of dynamic programming depends on

|pairs(mid(e))|, which is Ω(bw!).

This obstacle does not allow to break 2O(bw(G)·log bw(G)) · n

barrier.

I Problem: The local info in dynamic programming is too big!

I Issue: The same problem appears in many dynamic

programming algorithms!

I Idea: as long as we care about sparse graph classes, we can take

their structure into consideration!

Sphere-cut decomposition

Let G be a planar graph embedded on the sphere S0

A sphere-cut decomposition of G is a branch decomposition (T, τ)

where for every e ∈ E(T), the vertices in mid(e) are the vertices in

a Jordan curve of S0 that meets no edges of G.

j

l

b m

k

g
{2, 5, 7}

c

a d

f
h

i
e

c

8

4 6

1 3a b

f g

c d m

h i j k

l

5

7

2

Oe

Seymour-Thomas 1994, Dorn-Penninkx-Bodlaender-FF

2005

Theorem

Every planar graph G of branchwidth ` has a sphere-cut

decomposition of width `. This decomposition can be constructed

in O(n3) steps.

For doing dynamic programming on a sphere cut decomposition

(T, τ) of width ` we define, for every e ∈ E(T) the set

pairs(mid(e)) be the set of all pairings of mid(e)

The “usual” bound on the size of pairs(mid(e)) is 2O(`·log `)

However, we now have that

1: the vertices of mid(e) lay on the boundary of a disk and

2: the pairings cannot be crossing because of planarity.

For doing dynamic programming on a sphere cut decomposition

(T, τ) of width ` we define, for every e ∈ E(T) the set

pairs(mid(e)) be the set of all pairings of mid(e)

The “usual” bound on the size of pairs(mid(e)) is 2O(`·log `)

However, we now have that

1: the vertices of mid(e) lay on the boundary of a disk and

2: the pairings cannot be crossing because of planarity.

For doing dynamic programming on a sphere cut decomposition

(T, τ) of width ` we define, for every e ∈ E(T) the set

pairs(mid(e)) be the set of all pairings of mid(e)

The “usual” bound on the size of pairs(mid(e)) is 2O(`·log `)

However, we now have that

1: the vertices of mid(e) lay on the boundary of a disk and

2: the pairings cannot be crossing because of planarity.

It follows that pairs(mid(e)) = O(C(|mid(e)|)) = O(C(`))

Where C(`) is the `-th Catalan Number.

It is known that C(`) ∼ 4`

`3/2
√
π

= 2O(`)

Therefore: dynamic programming for finding the longest path of a

planar graph G on a sphere cut decompositions of G with width

≤ ` takes O(2O(`) · n) steps.

Conclusion: [by bidimensionality]

Planar k-Longest Path can be solved in O(2O(
√
k) · n+ n3) steps

It follows that pairs(mid(e)) = O(C(|mid(e)|)) = O(C(`))

Where C(`) is the `-th Catalan Number.

It is known that C(`) ∼ 4`

`3/2
√
π

= 2O(`)

Therefore: dynamic programming for finding the longest path of a

planar graph G on a sphere cut decompositions of G with width

≤ ` takes O(2O(`) · n) steps.

Conclusion: [by bidimensionality]

Planar k-Longest Path can be solved in O(2O(
√
k) · n+ n3) steps

It follows that pairs(mid(e)) = O(C(|mid(e)|)) = O(C(`))

Where C(`) is the `-th Catalan Number.

It is known that C(`) ∼ 4`

`3/2
√
π

= 2O(`)

Therefore: dynamic programming for finding the longest path of a

planar graph G on a sphere cut decompositions of G with width

≤ ` takes O(2O(`) · n) steps.

Conclusion: [by bidimensionality]

Planar k-Longest Path can be solved in O(2O(
√
k) · n+ n3) steps

I The same holds for several other problems where an analogue of

pairs(mid(e)) can be defined for controlling the size of the tables in

dynamic programming.

I Like that one can design 2O(
√

k) · nO(1) step algorithms for

parameterized planar versions of Cycle Cover, Path Cover,

Longest Cycle, Connected Dominating Set, Feedback

Vertex Set, Hamiltonian Cycle, Graph Metric TSP, Max

Leaf Tree, etc.

I The same holds for several other problems where an analogue of

pairs(mid(e)) can be defined for controlling the size of the tables in

dynamic programming.

I Like that one can design 2O(
√

k) · nO(1) step algorithms for

parameterized planar versions of Cycle Cover, Path Cover,

Longest Cycle, Connected Dominating Set, Feedback

Vertex Set, Hamiltonian Cycle, Graph Metric TSP, Max

Leaf Tree, etc.

How to use Catalan structure in non-planar graphs?

We say that branch decomposition (T, τ) of width ` has the

Catalan Structure for k-Longest Path if

∀e∈E(T) pairs(mid(e)) = 2O(`)

I We have seen that, for planar graphs, one can construct a

branch decomposition with the Catalan structure for the

k-Longest Path problem.

How to use Catalan structure in non-planar graphs?

We say that branch decomposition (T, τ) of width ` has the

Catalan Structure for k-Longest Path if

∀e∈E(T) pairs(mid(e)) = 2O(`)

I We have seen that, for planar graphs, one can construct a

branch decomposition with the Catalan structure for the

k-Longest Path problem.

Dorn-FF-Thilikos 2008

Theorem

For any H-minor free graph class G there is a constant cH

(depending only on H) such that the following holds: For every

graph G ∈ G and any positive integer w, it is possible to construct

a cH · nO(1)-step algorithm that outputs either

1. a correct report that bw(G) > w or

2. a branch decomposition (T, τ) with the Catalan structure and

of width cH · w.

Consequences:

I For H-minor free graphs, one can construct an algorithm that

solves the k-Longest Path problem in 2O(
√
k) · nO(1) steps.

I Using the same result one can also solve, for H-minor free

graphs, in 2O(
√
k) · nO(1) steps, the the standard parameterization

of Longest Cycle, and Cycle/Path Cover, parameterized

either by the total length of the cycles/paths or the number of the

cycles/paths.

Consequences:

I For H-minor free graphs, one can construct an algorithm that

solves the k-Longest Path problem in 2O(
√
k) · nO(1) steps.

I Using the same result one can also solve, for H-minor free

graphs, in 2O(
√
k) · nO(1) steps, the the standard parameterization

of Longest Cycle, and Cycle/Path Cover, parameterized

either by the total length of the cycles/paths or the number of the

cycles/paths.

By applying modifications it is possible to define an analogue of

Catalan Structure property for other problems like Feedback

Vertex Set, Connected Dominating Set, and Max Leaf

Tree

Proof idea: again Graph Minors

[Robertson and Seymour – GM 16]: any H -minor free graph can

roughly be obtained by identifying in a tree-like way small cliques

of a collection of components that are almost embeddable on

bounded genus surfaces.

I Proof idea: We construct an “almost”-planarizing with certain

topological properties, able to reduce the high genus

“almost”-embeddings to planar ones where the planarizing vertices

are “almost”-cyclically arranged in the plain.

Proof idea: again Graph Minors

[Robertson and Seymour – GM 16]: any H -minor free graph can

roughly be obtained by identifying in a tree-like way small cliques

of a collection of components that are almost embeddable on

bounded genus surfaces.

I Proof idea: We construct an “almost”-planarizing with certain

topological properties, able to reduce the high genus

“almost”-embeddings to planar ones where the planarizing vertices

are “almost”-cyclically arranged in the plain.

In the plane, we use sphere cut decompositions, that permit to encode

collections of paths that may pass through a separator as non crossing

pairings of the vertices of a cycle.

I This provides the so-called Catalan structure of the decomposition and

permits us to suitably bound the ways a path may cross its separators.

I This decomposition is used to build a decomposition on the initial

almost embeddible graph (following the tree-like way these components

are linked together).

In the plane, we use sphere cut decompositions, that permit to encode

collections of paths that may pass through a separator as non crossing

pairings of the vertices of a cycle.

I This provides the so-called Catalan structure of the decomposition and

permits us to suitably bound the ways a path may cross its separators.

I This decomposition is used to build a decomposition on the initial

almost embeddible graph (following the tree-like way these components

are linked together).

In the plane, we use sphere cut decompositions, that permit to encode

collections of paths that may pass through a separator as non crossing

pairings of the vertices of a cycle.

I This provides the so-called Catalan structure of the decomposition and

permits us to suitably bound the ways a path may cross its separators.

I This decomposition is used to build a decomposition on the initial

almost embeddible graph (following the tree-like way these components

are linked together).

Open problems I

Lower bounds on dynamic programming over branchwidth. Is it

possible to prove (up to some conjecture in complexity theory)

that Longest Path on graphs of branchwidth ` cannot be solved in

2o(` log `)m?

Can Vertex Cover be solved faster than 2`nO(1)?

Open problems I

Lower bounds on dynamic programming over branchwidth. Is it

possible to prove (up to some conjecture in complexity theory)

that Longest Path on graphs of branchwidth ` cannot be solved in

2o(` log `)m?

Can Vertex Cover be solved faster than 2`nO(1)?

Open problems II

When applying our technique on different problems we define, for

each one of them, an appropriate analogue of pairs and prove

that it also satisfies the Catalan structure property (i.e. is bounded

by 2O(|mid(e)|)).

I It is challenging to find a classification criterion (logical or

combinatorial) for the problems that are amenable to this

approach.

Open problems II

When applying our technique on different problems we define, for

each one of them, an appropriate analogue of pairs and prove

that it also satisfies the Catalan structure property (i.e. is bounded

by 2O(|mid(e)|)).

I It is challenging to find a classification criterion (logical or

combinatorial) for the problems that are amenable to this

approach.

Open problems III

Sufficient condition: Bidimensionality (plus fast dynamic

programming) yields subexponential parameterized algorithm.

What are the necessary conditions?

Remark: Every problem on planar graphs for which we know

subexponential parameterized algorithm is either bidimensional, or

can be reduced to a bidimensional problem.

Open problems III

Sufficient condition: Bidimensionality (plus fast dynamic

programming) yields subexponential parameterized algorithm.

What are the necessary conditions?

Remark: Every problem on planar graphs for which we know

subexponential parameterized algorithm is either bidimensional, or

can be reduced to a bidimensional problem.

Open problems IV

Branchwidth: Polynomial time algorithm for graphs of bounded

genus? H-minor free graphs?

Further reading. Subexponential algorithms and

bidimensionality

J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks,

and R. Niedermeier, Fixed parameter algorithms for

dominating set and related problems on planar graphs,

Algorithmica, 33 (2002), pp. 461–493.

E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and

D. M. Thilikos, Subexponential parameterized algorithms

on graphs of bounded genus and H-minor-free graphs, Journal

of the ACM, 52 (2005), pp. 866–893.

Further reading. Catalan structures and dynamic

programming

F. Dorn, E. Penninkx, H. Bodlaender, and F. V.

Fomin, Efficient exact algorithms on planar graphs: Exploiting

sphere cut branch decompositions, Proceedings of the 13th

Annual European Symposium on Algorithms (ESA 2005),

vol. 3669 of LNCS, Springer, 2005, pp. 95–106.

F. Dorn, F. V. Fomin, and D. M. Thilikos, Catalan

structures and dynamic programming on H-minor-free graphs,

in Proceedings of the 19th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA 2008), ACM-SIAM, pp. 631–640.

Further reading. Surveys

E. Demaine and M. Hajiaghayi, The bidimensionality

theory and its algorithmic applications, The Computer Journal,

(2007), pp. 332–337.

F. Dorn, F. V. Fomin, and D. M. Thilikos,

Subexponential parameterized algorithms, Computer Science

Review, 2 (2008), pp. 29–39.

	Titlepage
	Example
	Introduction
	Outline of the tutorial
	Graph Minors

	Branchwidth
	Dynamic programming
	Grid Theorem
	We know enough to fix VC
	Challenges to discuss

	Parameters
	Examples of parameters

	Bidimensionality
	Planar Vertex Cover
	FVS
	Planar Dominating Set
	Bidimensionality
	Limits of bidimensionality
	Limits of bidimensionality
	More Grids
	Planar graphs
	Induced cycle

	Catalan Structures
	Dynamic programming for branch decompositions
	Non-local problems
	Geometric Branch Decompositions
	Catalan numbers in tables of dynamic programming

	Non Planar Catalan Structures
	Branch decompositions with Catalan Structures
	Consequences
	Proof ideas

	Conclusion
	Open problems

	Further reading

